Three-state conical intersections in cytosine and pyrimidinone bases.
نویسندگان
چکیده
Three-state conical intersections have been located and characterized for cytosine and its analog 5-methyl-2-pyrimidinone using multireference configuration-interaction ab initio methods. The potential energy surfaces for each base contain three different three-state intersections: two different S(0)-S(1)-S(2) intersections (gs/pi pi(*)/n(N)pi(*) and gs/pi pi(*)/n(O)pi(*)) and an S(1)-S(2)-S(3) intersection (pi pi(*)/n(N)pi(*)/n(O)pi(*)). Two-state seam paths from these intersections are shown to be connected to previously reported two-state conical intersections. Nonadiabatic coupling terms have been calculated, and the effects of the proximal third state on these quantities are detailed. In particular, it is shown that when one of these loops incorporates more than one seam point, there is a profound and predictable effect on the phase of the nonadiabatic coupling terms, and as such provides a diagnostic for the presence and location of additional seams. In addition, it is shown that each of the three three-state conical intersections located on cytosine and 5-methyl-2-pyrimidinone is qualitatively similar between the two bases in terms of energies and character, implying that, like with the stationary points and two-state conical intersections previously reported for these two bases, there is an underlying pattern of energy surfaces for 2-pyrimidinone bases, in general, and this pattern also includes three-state conical intersections.
منابع مشابه
Comparison of the non-radiative decay mechanisms of 4-pyrimidinone and uracil: an ab initio study.
We performed a comparative theoretical study of the relaxation mechanisms of the excited states of uracil and 4-pyrimidinone with the CASSCF, CASPT2, and CC2 ab initio methods. The calculated vertical excitation energies agree with the experimental UV absorption maxima of the two compounds. Three low-lying conical intersections between the S(0) and S(1) states (one for uracil, two for 4-pyrimid...
متن کاملThree-state conical intersections in nucleic acid bases.
The involvement of three-state conical intersections in the photophysics and radiationless decay processes of the nucleobases has been investigated using multireference configuration interaction methods. Three-state conical intersections have been located for the pyrimidine base, uracil, and the purine base, adenine. In uracil, a three-state degeneracy between the S(0), S(1), and S(2) states ha...
متن کاملPhotodynamical simulations of cytosine: characterization of the ultrafast bi-exponential UV deactivation.
Deactivation of UV-excited cytosine is investigated by non-adiabatic dynamics simulations, optimization of conical intersections, and determination of reaction paths. Quantum chemical calculations are performed up to the MR-CISD level. Dynamics simulations were performed at multiconfigurational level with the surface hopping method including four electronic states. The results show the activati...
متن کاملUltrafast radiationless decay mechanisms through conical intersections in cytosine: Computational insight and topological analysis of the charge density distributions
The quantum theory of atoms-in-molecules (QTAIM) in conjunction with the DFT/B3LYP/6-311++G(2d,2p) wave function are used to compute the atomic, bonded and non-bonded interactions, distributions of the charge density, ρ(r), and its Laplacian, ∇ρ(r), for the ground equilibrium structure of cytosine. The study has been further extended to include two conical intersection (CI) structures that unde...
متن کاملUnified model for the ultrafast decay of pyrimidine nucleobases.
Ultrafast decay processes detected after absorption of UV radiation in gas-phase pyrimidine nucleobases uracil, thymine, and cytosine are ascribed to the barrierless character of the pathway along the low-lying 1(pipi*) hypersurface connecting the Franck-Condon region with an out-of-plane distorted ethene-like conical intersection with the ground state. Longer lifetime decays and low quantum yi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 128 21 شماره
صفحات -
تاریخ انتشار 2008